Solutions to Discussion Problems for Math 180

Thursday, March 5, 2015

Review

1. If $f(x)=\tan ^{-1}(3 x-2)$, what is $f^{-1}(x)$?

$$
x=\tan ^{-1}(3 y-2) \quad \Rightarrow \quad \tan (x)=3 y-2 \quad \Rightarrow \quad y=\frac{\tan (x)+2}{3}
$$

2. Find the first and second derivatives of each function:
(a) $5 \sin (x)-4 \cos (x)$

$$
f^{\prime}(x)=5 \cos (x)+4 \sin (x) ; \quad f^{\prime \prime}(x)=-5 \sin (x)+4 \cos (x)
$$

(b) $x e^{-x^{2}}$

$$
f^{\prime}(x)=e^{-x^{2}}+x e^{-x^{2}}(-2 x)=e^{-x^{2}}\left(1-2 x^{2}\right) ; \quad f^{\prime \prime}(x)=e^{-x^{2}}(-2 x)\left(1-2 x^{2}\right)+e^{-x^{2}}(-4 x)
$$

(c) $\tan ^{-1}(x)$

$$
f^{\prime}(x)=\frac{1}{1+x^{2}} ; \quad f^{\prime \prime}(x)=\frac{-1}{\left(1+x^{2}\right)^{2}}(2 x)
$$

(d) $\frac{2 x-3}{x-5}$

$$
f^{\prime}(x)=\frac{(x-5)(2)-(2 x-3)}{(x-5)^{2}}=\frac{-7}{(x-5)^{2}} ; \quad f^{\prime \prime}(x)=\frac{14}{(x-5)^{3}}
$$

3. For what positive value of x is x^{x} the smallest?

First we need the derivative of x^{x}. If $y=x^{x}$ then

$$
\ln (y)=\ln \left(x^{x}\right)=x \ln (x)
$$

so, taking the derivative of each side with respect to x,

$$
\frac{1}{y} \frac{d y}{d x}=\ln (x)+x \frac{1}{x}=\ln (x)+1
$$

Solving,

$$
\frac{d y}{d x}=y(\ln (x)+1)=x^{x}(\ln (x)+1)
$$

At a minimum, the derivative vanishes, so to find derivatives we should check when

$$
x^{x}(\ln (x)+1)=0 .
$$

Since x^{x} is positive for $x>0$, it cannot be zero, so the only way this equation could hold would be if

$$
\ln (x)+1=0 \quad \Rightarrow \quad \ln (x)=-1 \quad \Rightarrow \quad x=e^{-1}=\frac{1}{e}
$$

and then it remains only to check that this is indeed a minimum, which we can do e.g. by noting that the derivative is negative for $x<1 / e$ and positive for $x>1 / e$.
4. Prove that $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$ using implicit differentiation.

We want the derivative of $y=f^{-1}(x)$. Rewriting this as $f(y)=x$, we can take derivatives of each side with respect to x, giving

$$
f^{\prime}(y) \frac{d y}{d x}=1 \quad \Rightarrow \quad \frac{d y}{d x}=\frac{1}{f^{\prime}(y)}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

This time
5. On which intervals is $x e^{-x^{2}}$ increasing? Decreasing?

From 2(b), the derivative is $e^{-x^{2}}\left(1-2 x^{2}\right)$, so our critical points are given by

$$
e^{-x^{2}}\left(1-2 x^{2}\right)=0
$$

Since $e^{-x^{2}}$ must be positive, it cannot be zero, so the only way to satisfy this equation is for

$$
1-2 x^{2}=0 \quad \Rightarrow \quad 2 x^{2}=1 \quad \Rightarrow \quad x= \pm \frac{\sqrt{2}}{2}
$$

Checking signs, we see that this function is increasing on $(-\sqrt{2} / 2, \sqrt{2} / 2)$ and decreasing elsewhere.
6. On which intervals are the following functions concave up? Concave down?
(a) $x^{4}-2 x^{3}+1$

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3}-6 x^{2} \\
f^{\prime \prime}(x)=12 x^{2}-12 x=12 x(x-1)
\end{gathered}
$$

So the potential inflection points are at $x=0$ and $x=1$. Checking signs, we see that f is concave up on $(-\infty, 0) \cup(1, \infty)$ and concave down on $(0,1)$.
(b) $\frac{2 x-3}{x-5}$

From 2(d),

$$
f^{\prime \prime}(x)=\frac{14}{(x-5)^{3}}
$$

which is positive for $x>5$ and negative for $x<5$. It follows that f is concave down on $(-\infty, 5)$ and concave up on $(5, \infty)$.
7. Sketch the graph of a differentiable function $f(x)$ on $(-\infty, 0) \cup(0, \infty)$ such that $f^{\prime}(x)<0$ for $x<0$, $f^{\prime}(x)>0$ for $x>0$, and $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=2$.
Many possible answers.
8. A patient comes into the emergency room with a myocardial infarction. You administer nitroglycerin as a vasodilator, causing the radii of the blood vessels to increase by 2% per minute. The Hagen-Poiseuille equation from fluid dynamics tells us that the blood flow through a vessel is directly proportional to the fourth power of its radius. The flow must increase by at least 10% per minute or your patient will die. What happens?

We're told $Q=k r^{4}$. We want to know about Q^{\prime} / Q and r^{\prime} / r, so one thing we can do is notice that $\ln (Q)=\ln (k)+4 \ln (r)$. Taking derivatives with respect to time, we have

$$
\frac{1}{Q} \frac{d Q}{d t}=4 \frac{1}{r} \frac{d r}{d t}=4(2 \% / \mathrm{min})=8 \% / \mathrm{min}
$$

This is less than $10 \% / \mathrm{min}$, so you will have to do something other than simply administering the nitroglycerin or your patient will die. DISCLAIMER: I am not a physician, these numbers are completely made up, and this does not constitute any kind of medical advice.

